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Abstract—This paper presents post-silicon results for the Ascend secure processor, taped out in a 32 nm SOI process. Ascend

prevents information leakage over a processor’s digital I/O pins—in particular, the processor’s requests to external memory—and

certifies the program’s execution by verifying the integrity of the external memory. In secure processor design, encrypting main memory

is not sufficient for security because where and whenmemory is accessed reveals secret information. To this end, Ascend is equipped

with a hardware Oblivious RAM (ORAM) controller, which obfuscates the address bus by reshuffling memory as it is accessed. To our

knowledge, Ascend is the first prototyping of ORAM in custom silicon. Ascend has also been carefully engineered to ensure its timing

behaviors are independent of user private data. In 32 nm silicon, all security components combined (the ORAM controller, which

includes 12 AES rounds and one SHA-3 hash unit) impose a moderate area overhead of 0.51 mm2. Post tape-out, the security

components of the Ascend chip have been successfully tested at 857 MHz and 1.1 V, at which point they consume 299 mWof power.

Index Terms—Computation outsourcing, secure processors, oblivious RAM, integrity verification, ASIC design
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1 INTRODUCTION

AS embedded and mobile devices become ubiquitous,
users have become more computationally limited and

computation outsourcing is becoming more common. From
financial information to medical records, sensitive user data
is being sent to and computed upon by the cloud. Data pri-
vacy has therefore become a huge concern, as sensitive user
data is being revealed to and can be attacked by potentially
malicious cloud applications, hypervisors/operating sys-
tems, or insiders.

One example is health diagnoses given a user’s private
medical records [1]. In this case, a mobile device is constantly
monitoring its user’s symptoms and wants to compute the
likelihood that the user has some condition given these
symptoms. To outsource computation, the device sends a
cloud server an encryption of {symptoms, condition of inter-
est}, which will be inputs to a program (call it MedComp()).
After running MedComp() on the user’s private data, the
server sends an encryption of the result (e.g., “there is a 55
percent likelihood that you have the condition”) back to the
user. To maintain privacy, the server must never learn any-
thing about the user’s private inputs—the symptoms or dis-
eases of interest—at any time before, during or after the
computation.More examples are given in [1].

One candidate solution is for the server to use tamper-
resistant hardware [2], [3], [4]. Here, computation takes place
inside a secure hardware compartment on the server side that

protects the user’s private data while it is being computed
upon. The smaller the trusted computing base (TCB), the bet-
ter from a security perspective. At the same time, removing
components from the TCB typically impacts performance
and/or energy efficiency. Despite the hit in efficiency, the
computationally-limited user is still motivated to outsource
computation since compute, energy and memory resources
are significantly cheaper for the server than the user.

A serious limitation with current secure hardware solu-
tions, however, is that they have to “trust” the program run-
ning on the secure hardware. To “trust” the program, the
user has to “sign-off” on that program, believing that it is
free of malicious code or bugs that leak sensitive data. But
applications like MedComp() are seldom trustworthy. Veri-
fying bug-free and malicious behavior is a hard problem, if
not intractable, for sufficiently complex programs. Frequent
software patches, which are typical in modern software
development, only confound the issue. Furthermore, the
user may not have access to the program in the first place as
the program may be proprietary.

TheAscend1 secure processor is a step towards solving this
problem. With Ascend, the user sends the server encrypted
input (symptoms and medical information), and requests a
program (e.g., MedComp()) to be executed. The server would
then run the program on the user’s private data on anAscend
processor, which decrypts user input, runs the program and
returns encrypted results to the user. Ascend ensures that
even a buggy or malicious program cannot leak information
about the user’s private data outside the Ascend chip.

1.1 The Problem with Untrusted Programs

Today’s secure processors (e.g., Intel+TXT [2], XOM [3],
Aegis [4], and Intel SGX [5]) leak private information when
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running badly written or malicious programs. Consider the
following scenario. A user sends the server its symptoms
and condition of interest (denoted x) and expects the server
to run the MedComp() program described above. Note, the
user will send x to the server encrypted, and x is decrypted
inside the secure processor. However, the server being curi-
ous may instead run the following program in order to learn
the user’s data.

void curious(x) {

if (x & 0x1) M[0];

}

M denotes program memory, which will be backed up in
cache (inside the processor) and in DRAM/disk (outside
the processor). If M[0] is not in cache, whether it is accessed
is visible to the server and reveals a bit in the user’s data.
The server can then repeat this experiment with different
versions of curious(x) to learn other bits in x.

These types of attacks are difficult to prevent. Adding
cache doesn’t help: The server can re-design curious(x)

to miss the cache. Encrypting data that leaves the secure
processor also doesn’t help. As shown in the above exam-
ple, the attack can succeed when the server sees where the
program accesses memory (the access pattern), and
whether/when accesses occur.

Of course, even if the server does run a non-malicious
program, program characteristics or bugs can leak private
information in the same way. Here, we use a toy example
curious() to illustrate the point, but several works have
demonstrated information leakage frommemory access pat-
terns in practical scenarios [6], [7], [8], [9].

1.2 Ascend: Obfuscation in Hardware

Ascend defeats attacks like those posed by the curious()

program by performing obfuscation in hardware. Ascend
guarantees that given an untrusted program P , a public
length of time T and two arbitrary inputs x and x0: Running
P ðxÞ for T time is indistinguishable from running P ðx0Þ for
T time from any of the Ascend processor’s digital external
pins. Ascend has input/output (I/O) and address pins like
a normal processor, but obfuscates both the value and the
timing of digital signals on these pins. Therefore, the server
does not gain any information by watching these pins.
Ascend does not protect analog side channels like power,
heat, electromagnetic or radio-frequency channels.

Unlike a normal processor, Ascend runs for a parameteriz-
able amount of time T that is chosen by the user before the
program starts, and is public to the server. Since T is set a pri-
ori, it may or may not be sufficient to complete the program
given the user’s inputs. If the program terminates before T
time has elapsed, Ascend will perform indistinguishable
dummy work until time T . After T time is complete, Ascend
will output either the final result or an intermediate program
state, encryptedwith the user’s key. In either case, the Ascend
chip emits the same number of encrypted bits (the result or
state, possibly padded). The server, therefore, cannot deter-
mine whether the program completes or how much forward
progress was made. In either case, signals on Ascend’s digital
pins must leak no information about private user data for the
entire T time, regardless of the programbeing run.

Putting these ideas together, the server cannot learn about
the user’s input by running programs like curious() from

Section 1.1. Regardless of whether and how curious()

accesses external memory, Ascend runs for T time and
behaves in an indistinguishable way from the perspective of
digital side channels.

1.3 Contributions

This paper presents post-silicon results for the Ascend
secure processor. We make three primary contributions:

1) We give an overview of the Ascend execution model
to securely run untrusted programs. This part (Sec-
tion 2) has been published in an STC workshop
paper [10].

2) We provide a comprehensive overview of challenges
in implementing a hardware Oblivious RAM
(ORAM) controller, the core component in the
Ascend design. We present new techniques to
address these issues. These materials (Section 4, 5, 6)
have been published in a series of our papers [11],
[12], [13].

3) We implement all the techniques described in this
paper in hardware, tape out the Ascend processor in
32 nm silicon, and report hardware evaluation and
measurement results. This part (Section 7) is new
material for this manuscript.

The security mechanisms of Ascend take up 0.51 mm2 of
silicon in 32 nm technology, which is roughly half the area of
a single processor core. Post tape-out, the security compo-
nents of the Ascend chip has been successfully tested at
857 MHz and 1.1 V, at which point they consume 299 mW of
power. Our design is entirely written in Verilog and is avail-
able at https://github.com/ascend-secure-processor/oram.

1.4 Organization

The rest of the paper is organized as follows. Section 2
presents the Ascend execution model. Section 3 gives a
background on Oblivious RAM (ORAM). Section 4 presents
the main challenges in implementing ORAM in hardware.
Sections 5 and 6 describe optimizations which address the
aforementioned challenges. Sections 7 present ASIC imple-
mentation and measurement results. Section 8 discusses
related work. Finally, Section 9 concludes.

2 FRAMEWORK

2.1 Protocols

The user wants to perform computation on private inputs x
using a program P . P is stored on the server-side and may
have a large amount of public data y associated with it (e.g.,
the contents of a database). The result of the user’s computa-
tion is denoted P ðx; yÞ. P is assumed to be a batch program,
meaning that it only takes input at the beginning, and pro-
duces an encrypted output upon termination.2 The protocol
for computing P ðx; yÞ works as follows (shown graphically
in Fig. 1):

1) The user shares a symmetric key K securely with
Ascend, using standard secure channel protocols

2. For interested readers, the model is generalized to programs that
take public streams of input [14], such as content-based image recogni-
tion software processing video feeds.
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(e.g., as used by Intel’s SGX [5]). For this purpose, we
assume that Ascend is equipped with a private key
and a certified public key.

2) The user encrypts its inputs x using K, and then
chooses T and R. T is the public time budget that
the user is willing to pay the server to compute
on P . R is the number of bytes reserved for P ’s
final or intermediate output. The user sends
ðencryptKðxÞ; T; R; requestðP; yÞÞ to the server,
where requestðP; yÞ is a request to use the pro-
gram P with server data y.

3) After receiving ðencryptKðxÞ; T; R; requestðP; yÞÞ, the
server sends encryptKðxÞ; P; y; T;R to Ascend.
Ascend decrypts encryptKðxÞ, and writes x, P and y
to external memory, (re-)encrypted.

4) Ascend spends T cycles running P . After T cycles,
Ascend obtains r, the R-byte result that equals either
P ðx; yÞ or some intermediate result.

5) Ascend creates a Message Authentication Code
(MAC, e.g., a keyed hash [15]) on the program, user’s
input and parameters to certify the execution, i.e.,
h ¼ MACðP k x k y k T Þ.3

6) Ascend sends encryptKðrÞ and h back to the user (via
the server).

7) The user verifies the MAC, (if match) decrypts and
checks whether the program finished. Without loss
of generality, we assume r contains an “I am done”
message if P finishes.

2.2 Threat Model

Ascend is a single-chip coprocessor on the server and inter-
acts with the server to run programs. The session key K is
stored in a register, accessible only to the encrypt/decrypt
units—not to the program P . The Ascend chip is assumed
to be tamper-resistant: The server cannot remove packag-
ing/metal layers, and hence cannot see K or any decrypted
values inside Ascend. The server can, however, monitor the
traffic and timing on Ascend’s I/O pins. The I/O pins
record Ascend’s interactions to an external memory while
the program is running—including the data, operation and
address of those requests as well as when those requests are
made—and also record when the program terminates and
the final program output. In this paper, we assume all exter-
nal memory requests are to fetch and evict processor cache
lines from/to main memory. Ascend does not protect any

analog side channels (e.g., power, heat, electromagnetic or
radio-frequency).

The server can repeatedly perform experiments with
Ascend. For each experiment, the server initializes Ascend
with arbitrary encryptKðxÞ, P , y, T , R and monitors how
Ascend interacts with the outside world through the digi-
tal pins. We make no assumptions as to how the server
monitors the pins. An insider may attach an oscilloscope
to the pins directly, or create a sniffer program that moni-
tors what bits change in Ascend’s external memory. At
any time, the server can modify the contents in the exter-
nal memory or perform a denial-of-service attack by
delaying or not returning memory responses. These
experiments can be run offline without the user’s knowl-
edge. Running the curious() program from Section 1.1
is one such experiment.

To cheat the user, the server can initialize the system
incorrectly (e.g., supply a different program P 0, run for less
than T time), or tamper with external memory during exe-
cution. The certified execution along with the memory
integrity verification in Section 5.2 will allow the user to
detect any cheating. Given that the user can detect cheating,
the server’s motivation changes: It wants as much business
from the user as possible and therefore is motivated to
return correct results. But it still wishes to passively (without
actively tampering) learn as much information as possible
about the user’s input.

2.3 Design Overview

Ascend communicates over its I/O pins to a fixed-size
external memory that is controlled by and visible to the
server. All data sent to external memory from Ascend is
encrypted under K. Addresses sent to external memory,
and whether a given operation is a read or a write (the
opcode), are in plaintext. Preventing information leakage
from the plaintext address and opcode is a major goal of
Ascend. Address and opcode obfuscation is accomplished
using a hardware Oblivious RAM controller. At a high-
level, the ORAM controller encrypts and shuffles memory
such that any two access patterns of the same length are
indistinguishable to the server.

To obfuscate the timing channel, we architect Ascend to
access external memory at fixed/data-independent rate.
The data-independent rate may cause the external memory
to be accessed when not needed. In this case, Ascend per-
forms a dummy access, which is indistinguishable from a
real access due to the guarantees provided by ORAM. On
the other hand, the program may wish to access memory
sooner than the data-independent rate allows. In this case,
the program will stall until the next access is allowed to
happen. This can be achieved with a simple hardware
counter and queue that increments each processor cycle and
triggers a real or dummy memory access when it reaches
the threshold. The threshold can be set/changed by the
server before or during the computation. Padding program
execution time to the threshold T is handled similarly:
Dummy ORAM accesses are made, at the prescribed inter-
val, until T is reached. We also engineer the ORAM control-
ler microarchitecture carefully such that during each ORAM
access, the timing of each request made to the DRAM does
not depend on any user secret.

Fig. 1. The protocol between a user, an untrusted server and ascend.
Numbers follow Section 2.1.

3. If P is the server’s proprietary software, the server can have a
trusted third party certify hashðP Þ, and replace P with hashðP Þ in the
MAC. This protects the server from revealing the detailed code of P .
Same applies to the dataset y.
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3 PATH ORAM

Our hardware ORAM is based on the Path ORAM algo-
rithm due to its simplicity and efficiency [16]. We will first
define ORAM [17] and then describe the Path ORAM algo-
rithm in detail.

3.1 ORAM Security Definition

An ORAM is made up of two components: A (trusted) client
and (untrusted) external memory or server. In the Ascend
setting, the client is an ORAM controller—trusted logic on
the processor die which intercepts last-level cache (LLC)
misses. Server storage is a DRAM DIMM which the server
uses as main memory.

ORAM guarantees the following. Suppose the processor
creates two sequences of memory requests (LLC misses) W
and W 0. Each sequence is made up of read ðread; addrÞ and
write ðwrite; addr; dataÞ tuples. The ORAM controller guar-
antees that from the server’s perspective (which can moni-
tor the processor bus, or the state of the DRAM): If
jWj ¼ jW 0j , where j. . .j indicates length, then W is compu-
tationally indistinguishable from W 0. Informally, this hides
the tuples in W and W 0: Namely whether the client is read-
ing/writing to the storage, where the client is accessing,
and the underlying data that the client is accessing.

3.2 Basic Path ORAM Protocol

Path ORAM’s [16] server storage is logically structured as a
binary tree [18], as shown in Fig. 2. The ORAM tree’s levels
range from 0 (the root) to L (the leaves). Each node in the tree
is called a bucket and has a fixed number of slots (denoted Z)
which can store B-bit data blocks. A slot may be empty at
any point, in which case we say the slot contains a dummy
block. Non-empty slots contain real blocks. All blocks in the
tree (real or dummy) are encrypted with a probabilistic
encryption scheme, so any two blocks are indistinguishable
after encryption. A path through the tree is a contiguous
sequence of buckets from the root to some leaf l and is
referred to as PðlÞ. A path PðlÞ is uniquely identified by a

leaf l, so we use “path” and “leaf” interchangeably in the
paper. All symbols and parameters related to Path ORAM
are summarized in Table 1 for convenience.

The client logic is made up of the position map, the
stash and control logic. The position map, PosMap for
short, is a lookup table that associates each data block
with a random path in the ORAM tree. If N is the maxi-
mum number of real data blocks in the ORAM, the Pos-
Map capacity is N � L bits: One mapping per block. The
stash is a memory that temporarily stores up to a small
number of data blocks (in plaintext).

3.2.1 Path ORAM Invariant and Operation

At any time, each data block in Path ORAM is mapped to a
random path via the PosMap. Path ORAM maintains the
following invariant: If a block is mapped to leaf l, then it must
be either in some bucket on PðlÞ or in the stash.

To make a request for a block with address a (block a for
short), the client calls the function accessORAMða; op; d0Þ,
where op is either read or write and d0 is the new data when
op ¼ write (the steps are also shown in Fig. 2):

1) Look up PosMap with a, yielding the corresponding
leaf label l. Randomly generate a new leaf label l0

and update the PosMap entry for awith l0.
2) Read and decrypt all the blocks along path l. Add all

the real blocks to the stash and discard the dummies.
Due to the Path ORAM invariant, block a must be in
the stash at this point.

3) Update block a in the stash to have leaf l0.
4) If op ¼ read, return block a to the client. If op ¼ write,

replace the contents of block awith data d0.
5) Evict and encrypt as many blocks as possible from

the stash to PðlÞ in the ORAM tree (to keep the stash
occupancy low) while keeping the invariant. Fill any
remaining space on the path with encrypted dummy
blocks.

Some metadata is stored alongside each block in the
ORAM tree and in the stash. Metadata in the ORAM tree are
encrypted while metadata in the stash are in plaintext. The
metadata includes a block’s address and its leaf label. A spe-
cial address? is reserved for dummyblocks. Thesemetadata
allow the ORAM controller to discard dummy blocks, find
the requested block, and evict blocks in the above steps.

The eviction step (Step 5) warrants more detailed expla-
nation. Conceptually, this step tries to push each block in

Fig. 2. A path ORAM of L ¼ 3 levels and Z ¼ 4 slots per bucket. Sup-
pose block a, shaded black, is mapped to Pð1Þ. Block a can be located in
any of the shaded structures (i.e., on path 1 or in the stash).

TABLE 1
Path ORAM Parameters and Notations

Notation Meaning

N Number of real data blocks in ORAM
L Depth of the ORAM tree
Z Maximum number of real blocks per bucket
B Data block size (in bits)
A Eviction rate (larger means less frequent)
G Eviction counter
H The number of ORAMs in the recursion
X The number of leaves stored per PosMap block
C Maximumstash occupancy (excluding transient path)
PðlÞ Path from root to leaf l
K Symmetric key established at program start
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the stash as deep (towards the leaves) into the ORAM tree
as possible while keeping to the invariant that a block can
only live on its assigned path. Fig. 3 works out a concrete
example for the eviction logic. In Step 1 of Fig. 3, block A is
mapped to leaf 1 and therefore may be placed in buckets b1,
b2, and b3. It gets placed in bucket b2 because bucket b1 is
full and b2 is deeper than b3. In Step 2, block B could be
placed in b2 and b3 and gets placed in b3 because b2 is full
(since block Amoved there previously).

We refer to Step 1 (the PosMap lookup) as the FrontendðaÞ,
or Frontend, and Steps 2-5 as the Backendða; l; l0; op; d0Þ, or
Backend. Wewill describe in detail optimizations wemake to
thesemodules in Section 5 and 6, respectively.

3.2.2 Bucket Format

Each bucket isZðLþOðLÞ þBÞ bits in size before encryption.
Here, L bits denote the path each block is assigned to, OðLÞ
denotes the (encrypted) logical address a for each block. In
practice, OðLÞ ¼ Lþ 1 or Lþ 2 bits for Z ¼ 4, which means
50 percent of the DRAM can be used to store real blocks [11].
Conceptually, we can reserve a unique logical address ? to
mark a bucket slot as containing a dummy block. Our actual
implementation useZ extra ‘valid’ bits per bucket.

We use AES-128 in counter mode for encryption. The
ORAM controller maintains a monotonically increasing
(global) counter IV in a dedicated register.4 To encrypt a
bucket:

1) Break up the plaintext bucket into 128-bit chunks.
Encrypt each chunk with the following one-time
pad: AESKðIVkiÞ � chunki, where k denotes
concatenation.

2) The current IV is written out alongside the encrypted
bucket.

3) IV IVþ 1.
IV may be initialized to 1 during ORAM initialization.

Thus, it is important to use a different session key K for
each run, to avoid a replay attack. After encryption, each
bucket is ZðLþOðLÞ þBÞ þ j IV j bits in size.

3.2.3 ORAM Initialization

Onemay initialize ORAM simply by zeroing-out main mem-
ory. This means all IV fields are also 0: AES units performing
bucket decryption should treat the bucket as fully empty

when IV equals 0. Our actual implementation uses this
method. The downside of this scheme is that it requiresOðNÞ
work upfront, for every program execution. One could also
perform a “lazy initialization” scheme, which gradually initi-
alizes each bit ofmemory as it is accessed the first time [11].

3.2.4 Security

The intuition for Path ORAM’s security is that every Pos-
Map lookup (Step 1) will yield a fresh random leaf to access
the ORAM tree for that access. This makes the sequence of
ORAM tree paths accessed independent of the actual pro-
gram address trace. Probabilistic encryption hides which
block is accessed on the path. Further, stash overflow proba-
bility is negligible if Z � 4 [16], [19]. We assume Z ¼ 4 for
the rest of the paper.

We remark that ORAM does not hide the total number of
memory accesses. This is not an issue in our setting because
the total number of accesses is fully determined by the run-
time budget T and the memory access interval, independent
of any private user data (Section 2.3).

3.3 Recursive ORAM

As mentioned in previous sections, the number of entries in
the PosMap scales linearly with the number of data blocks
in the ORAM. In the secure processor setting, this results in
a significant amount of on-chip storage (up to hundreds of
MegaBytes). To address this issue, Shi et al., [18] proposed a
scheme called Recursive ORAM. The basic idea is to store
the PosMap in a separate ORAM, and store the new
ORAM’s (smaller) PosMap on-chip. If the new on-chip Pos-
Map is still too large, additional ORAMs can be added. We
make an important observation that the mechanics of Recursive
ORAM are remarkably similar to multi-level page tables in tradi-
tional virtual memory systems. We use this observation to
help explain ideas and derive optimizations.

We explain Recursive ORAM through the example in
Fig. 4, which uses two levels of recursion. The system now
contains 3 separate ORAM trees: The Data ORAM, denoted
as ORam0, and two PosMap ORAMs, denoted ORam1 and
ORam2. Blocks in the PosMap ORAMs are akin to page
tables. We say that PosMap blocks in ORami store X leaf
labels for X blocks in ORami�1. This is akin to having X
pointers to the next level page table. Generally, each Pos-
Map level can have a different X. We assume the same X
for all PosMaps for simplicity.

Suppose the LLC requests block a0, stored in ORam0.
The leaf label l0 for block a0 is stored in PosMap block

Fig. 3. Stash eviction example for Z ¼ 2 slots per bucket. Buckets are
labeled b0; b1; ; etc. We evict along the path to leaf 1, which includes
buckets b1, b2 and b3. Each block is represented as a tuple (path, block
ID), where ‘path’ indicates which path the block is mapped to.

Fig. 4. Recursive ORAM with PosMap block sizes X ¼ 4, making an
access to the data block with program address a0 ¼ 10010012. Recursion
shrinks the PosMap capacity from N ¼ 128 to 8 entries.

4. We could use per-bucket counters (as proposed in [11], but that
would introduce a security flaw when combined with our PMMAC
technique in Section 5.2, cf. [12].
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a1 ¼ a0=X of ORam1 (division is floored throughout this
paper). Like a page table, block a1 stores leaves for neigh-
boring data blocks (i.e., fa0; a0 þ 1; . . . ; a0 þX � 1g in the
case where a0 is a multiple of X). The leaf l1 for block a1 is
stored in the block a2 ¼ a0=X

2 stored in ORam2. Finally,
leaf l2 for PosMap block a2 is stored in the on-chip PosMap.
The on-chip PosMap is now akin to the root page table, e.g.,
register CR3 on X86 systems.

To make a Data ORAM access, we must first lookup the
on-chip PosMap, ORam2 and ORam1 in that order. Thus, a
Recursive ORAM access is akin to a full page table walk.

Additional PosMap ORAMs (ORam3;. . . ;ORamH�1)
may be added as needed to shrink the on-chip PosMap fur-
ther. H denotes the total number of ORAMs (including the
Data ORAM) in the recursion and H ¼ log ðN=pÞ=logX þ 1
if p is the number of entries in the on-chip PosMap.

4 DESIGN CHALLENGES FOR HARDWARE ORAM

The next two sections present the design of our hardware
ORAM controller. This represents the first hardware ORAM
with small client storage, integrity verification, or encryp-
tion units taped out and validated in silicon.

In this section, we first discuss major design challenges
for an ORAM controller implemented in hardware. In the
secure processor setting, the only prior hardware imple-
mentation of ORAM is an FPGA system called Phantom, by
Maas et al., [19]. That work left several design challenges,
which we address in Sections 5 and 6.

The first challenge is how to manage the position map
(PosMap, Section 3). The Phantom design does not use
Recursive ORAMs. As a result, it requires multiple FPGAs
just to store the PosMap, and thus is not suitable for integra-
tion with a single-chip secure processor.

We believe that to be practical and scalable to large
ORAM capacities in secure hardware, Recursive ORAM
(Section 3.3) is necessary. Obviously, the trade-off is perfor-
mance. One must access all the ORAMs in the recursion on
each ORAM access. Counter-intuitively, with small block
sizes, PosMap ORAMs can contribute to more than half of
the total ORAM latency as shown in Fig. 5. For a 4 GB Data
ORAM capacity, 39 and 56 percent of bandwidth are spent
on looking up PosMap ORAMs depending on the block size.
Increasing the on-chip PosMap capacity only slightly damp-
ens the effect. Abrupt kinks in the graph indicate when
another PosMap ORAM is added (i.e., whenH increases). In

Section 5.1, we show how insights from traditional virtual
memory systems, coupled with security mechanisms, can
dramatically reduce this PosMapORAMoverhead.

The second challenge in designing ORAM in hardware is
how to maximize throughput. Ideally, we would like the
limiting factor to be the memory bandwidth. Yet, the Phan-
tom design showed that this was actually hard to achieve.

One bottleneck is the stash eviction logic (Step 5 in Section
3.2). To decide where to evict blocks, Phantom constructs a
hardware heap sort on the stash [19]. Unfortunately, this sort-
ing step becomes the bottleneck under small block size and
high memory bandwidth. For example, in the Phantom
design, adding a block to the heap takes 11 cycles (see
Appendix A of [19]). If the ORAM block size and memory
bandwidth are such that accessing a block in memory takes
less than 11 cycles, system performance is bottlenecked by
the heap sort, not memory bandwidth. As a result, Phantom
was parameterizedwith large block size, e.g., 4 KByte.

While benefiting applications with good data locality, a
large block size severely hurts applications with erratic data
locality. Fig. 6 shows this effect. Motivated by the large
potential speedup from small blocks, we will develop a
stash eviction algorithm in Section 6.1 that flexibly supports
any practical block size (e.g., 64-Byte) without incurring per-
formance loss.

Even after removing bottlenecks in the stash, using a
small block size creates additional challenges in implement-
ing ORAM over DRAM. Recall from Section 3, accessing the
ORAM requires the ORAM controller to walk down random
paths in a binary tree where each node holds (say) Z ¼ 4
blocks, stored contiguously. DRAM row locality in this opera-
tion is therefore based on Z and the block size, and shrinking
the block size decreases this locality. Counter-intuitively,
ignoring this issue can cause 2� slowdown. In Section 6.2,
we give a scheme that removes this bottleneck and allows
ORAM to achieve > 90 percent of peak bandwidth.

5 ORAM FRONTEND

The techniques in this section only impact the Frontend and
can be applied to any Position-based ORAM Backend (such
as [18], [20], [21]). Section 5.1 presents a technique to opti-
mize the PosMap. Section 5.2 discusses how to utilize the
PosMap to implement integrity verification for ORAM.

5.1 PLB and Unified ORAM

5.1.1 PLB Caches and (In)Security

Given our understanding of Recursive ORAM as a multi-
level page table for ORAM (Section 3.3), a natural optimiza-
tion is to cache PosMap blocks (i.e., page tables) so that LLC

Fig. 5. The percentage of Bytes read from PosMap ORAMs in a full
Recursive ORAM access for X ¼ 8 (optimal found in [11]) and Z ¼ 4. All
bucket sizes are padded to 512 bits to estimate the effect in DDR3
DRAM. The notation b64 pm8 means the ORAM block size is 64 Bytes
and the on-chip PosMap is at most 8 KB.

Fig. 6. The speedup achieved over a set of SPEC06 workloads by
decreasing the block size from 4 KByte to 64 Bytes. The speedup
assumes there is no bottleneck in the stash eviction logic or DRAM for
any block size.
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accesses exhibiting program address locality require fewer
PosMap ORAM accesses on average. This idea is the essence
of the PosMap Lookaside Buffer, or PLB, whose name obvi-
ously originates from the Translation Lookaside Buffer
(TLB) in conventional systems.

Suppose the LLC requests block a0. Recall from
Section 3.3 that the PosMap block needed from ORami for
a0 has address ai ¼ a0=X

i. If this PosMap block is in the
PLB, the ORAM controller knows which path to access in
ORami�1, and can skip ORami and all the smaller PosMap
ORAMs ORamj where j > i. Otherwise, block ai is
retrieved from ORami and added to the PLB. When block ai
is added to the PLB, another block may have to be evicted,
in which case it is added to the stash of the corresponding
PosMap ORAM.

Unfortunately, since PLB hits/misses correlate directly to
a program’s access pattern, the PosMap ORAM access
sequence (filtered by PLB) leaks the program’s access pat-
tern (see [12] for a concrete example).

5.1.2 Security Fix: Unified ORAM Tree

To hide the PosMap access sequence, we will change Recur-
sive ORAM such that all PosMap ORAMs and the Data
ORAM store blocks in the same physical tree which we denote
ORamU. Organizationally, the PLB and on-chip PosMap
become the new Path ORAM Frontend, which interacts
with a single ORAM Backend.

Data blocks and the PosMap blocks originally from the
PosMap ORAMs (i.e., ORam1, . . . ;ORamH�1) are now
stored in a single ORAM tree (ORamU) and all accesses are
made to this one ORAM tree. Both data and PosMap blocks
now have the same size. Since the number of blocks in
ORami (i > 0) decreases exponentially with i, storing Pos-
Map blocks alongside data blocks adds at most one level to
the Unified ORAM tree ORamU.

Each set of PosMap blocks must occupy a disjoint
address space so that they can be disambiguated. For this
purpose we apply the following addressing scheme: Given
data block a0, the address for the PosMap block originally
in ORami for block a0 is given by ikai, where ai ¼ a0=X

i.
This address ikai is used to fetch the PosMap block from the
ORamU and to look up the PosMap block in the PLB. To
simplify the notation, we don’t show the concatenated
address ikai in future sections and just call this block ai.

Security-wise, both programs from the previous section
access only ORamU with the PLB and the adversary cannot
tell them apart (see Section 5.1.5 for more discussion on
security).

5.1.3 PLB Architecture

The PLB is a conventional hardware cache that stores Pos-
Map blocks. Each PosMap block is tagged with its block
address ai and the current path it’s mapped to. The path tag
allows us to add an evicted PosMap block to the stash with-
out accessing its own PosMap block. Simulation results show
that increasing PLB size and associativity brings limited
improvement [12], so we use an 8 KB direct-mapped PLB.

5.1.4 ORAM Access Algorithm

We introduce two new flavors of ORAM access to support
PLB refills/evictions (i.e., two more types of op in Section 3):
Read-remove and append. The idea of these two types of
accesses appeared in [11] but we describe them in more
detail below. Read-remove (readrmv) is the same as read
except that it physically deletes the block from the stash after
it is forwarded to the ORAM Frontend. Append (append)
adds a block to the stash without performing an ORAM tree
access. ORamU must not contain duplicate blocks: Only
blocks that are currently not in the ORAM (possibly read-
removed previously) can be appended. Further, when a
block is appended, the current leaf it is mapped to inORamU

must be known so that the block can be written back to the
ORAM tree during later ORAMaccesses.

The steps to read/write a data block with address a0 are
given below (shown pictorially in Fig. 7):

1) (PLB lookup) For i ¼ 0; . . . ; H � 2, look up the PLB for
the leaf of block ai (contained in block aiþ1). If one
access hits, save i and go to Step 2; else, continue. If
no access hits for i ¼ 0; . . . ; H � 2, look up the on-
chip PosMap for the leaf of block aH�1 and save
i ¼ H � 1.

2) (PosMap block accesses) While i � 1, perform a
readrmv operation to ORamU for block ai and add
that block to the PLB. If this evicts another PosMap
block from the PLB, append that block to the stash.
Decrement i. (This loop will not be entered if i ¼ 0.)

3) (Data block access) Perform an ordinary read or write
access to ORamU for block a0.

Importantly, aside from adding support for readrmv and
append, the above algorithm requires no change to the
ORAM Backend.

5.1.5 Security Analysis

We now give a proof sketch that our PLB+Unified ORAM
tree construction is secure. We make the following
observations:

Observation 1. If all leaf labels li used in fread, write,
readrmvg calls to Backend are random and independent
of each other, the Backend achieves the security of the
original Path ORAM (Section 3).

Observation 2. If an append is always preceded by a
readrmv, stash overflow probability does not increase

Fig. 7. PLB-enabled ORAM Frontend with X ¼ 4. Accessing the actual
data block a0 (Step 3 in Section 5.1.4) is not shown.
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(since the net stash occupancy is unchanged after both
operations).

Theorem 1. The PLB+Unified ORAM tree scheme reduces to the
security of the ORAM Backend.

Proof. The PLB+Unified ORAM Frontend calls Backend in
two cases: First, if there is a PLB hit the Backend request
is for a PosMap or Data block. In this case, the leaf l sent
to Backend was in a PosMap block stored in the PLB.
Second, if all PLB lookups miss, the leaf l comes from the
on-chip PosMap. In both cases, leaf l was remapped the
instant the block was last accessed. We conclude that all
fread, write, readrmvg commands to Backend are to ran-
dom/independent leaves and Observation 1 applies. Fur-
ther, an append command can only be caused by a PLB
refill which is the result of a readrmv operation. Thus,
Observation 2 applies. tu

5.2 PosMap MAC for ORAM Integrity

The Ascend processor needs to additionally integrity-verify
external memory. Now we describe a novel and simple
integrity verification scheme for ORAM called PosMap
MAC, or PMMAC. PMMAC achieves asymptotic improve-
ments in hash bandwidth over prior schemes and is easy to
implement in hardware.

It is well known that MAC is insufficient for memory
integrity checking due to replay attacks. A fix for this prob-
lem is to embed a non-repeating counter in each MAC [22].
The challenge is how to make the counter tamper-proof. The
idea of PMMAC is to use the already existing PosMap entries
as tamper-proof non-repeating counters to facilitate the
replay-resistant MAC scheme.

Suppose block a has data d and access counter c. We
replace the PosMap entry for block a with c and generate
the leaf l for block a as l ¼ PRFKða k cÞ mod 2L, where
PRFKðÞ is a pseudorandom function [23], which we imple-
ment using AES-128. Block a is written to the Backend as
the tuple ðh; dÞwhere

h ¼ MACKðc k a k dÞ:

We implementMACKðÞ using keyed SHA3-224. When block
a is read, the Backend returns ðh$

; d
$ Þ and PMMAC per-

forms the following check to verify authenticity/freshness:
assert h

$ ¼¼ MACKðc k a k d$ Þ where $ denotes values
that may have been tampered with. After the assertion is
checked, c is incremented for the returned block.

Security follows if it is infeasible to tamper with block
counters and no counter value for a given block is ever
repeated. The first condition holds because the tamper-
proof counters in the on-chip PosMap form the root of trust
and then recursively, the PosMap blocks become the root of
trust for the next level PosMap or Data ORAM blocks. The
second condition can be satisfied by making each counter
wide enough to not overflow, e.g., 64 bits wide.5

PMMAC significantly reduces the required hash band-
width. A scheme based on Merkle tree checks and updates
every hash on the path [24]. PMMAC only needs to check
and update one block (the block of interest) per access,
achieving an asymptotic reduction in hash bandwidth. For
Z ¼ 4 and L ¼ 16, PMMAC reduces hash bandwidth by
ZðLþ 1Þ ¼ 68�.

PMMAC requires no change to the ORAM Backend
because the MAC is treated as extra bits appended to the
original data block. The extra storage overhead is relatively
small: The ORAM block size is usually 64-128 Bytes and a
MAC is 80-128 bits.

5.2.1 Security Analysis

We first show that breaking our integrity verification
scheme is as hard as breaking the underlying MAC. We
start with the following observation:

Observation 3. If the first k� 1 address and counter pairs
ðai; ciÞ’s the Frontend receives have not been tampered
with, then the Frontend seeds a MAC using a unique
ðak; ckÞ, i.e., ðai; ciÞ 6¼ ðak; ckÞ for 1 � i < k. This further
implies ðai; ciÞ 6¼ ðaj; cjÞ for all 1 � i < j � k.

This property can be seen directly from the algorithm
description. For every a, we have a dedicated counter,
sourced from the on-chip PosMap or the PLB, that incre-
ments on each access.

Theorem 2. Breaking the PMMAC scheme is as hard as break-
ing the underlying MAC scheme.

Proof. We proceed via induction on the number of accesses.
In the first ORAM access, the Frontend uses ða1; c1Þ, to
call Backend for ðh1; d1Þ where h1 ¼ MACKðc1 k a1 k d1Þ.
Note that a1 and c1 cannot be tampered with since they
come from the Frontend. Thus, producing a forgery
ðh01; d01Þ where d01 6¼ d1 and h01 ¼ MACKðc1 k a1 k d01Þ is as
hard as breaking the underlying MAC. Suppose no integ-
rity violation has happened and Theorem 2 holds up to
access n� 1. Then, the Frontend sees fresh and authentic
ðai; ciÞ’s for 1 � i � n� 1. By Observation 3, ðan; cnÞ will
be unique and ðai; ciÞ 6¼ ðaj; cjÞ for all 1 � i < j � n. This
means the adversary cannot perform a replay attack
because all ðai; ciÞ’s are distinct from each other and are
tamper-proof. It is also hard to generate a valid MAC
with unauthentic data. Being able to produce a forgery
ðh0i; d0iÞ where d0i 6¼ di and h0i ¼ MACKðci k ai k d0iÞ means
the adversary can break the underlying MAC. tu
Next, to achieve privacy under active adversaries, we

require certain assumptions about how the ORAM imple-
mentation will possibly behave in the presence of tampered
data.

Property 1. An ORAM Backend access only reveals to the
adversary (a) the leaf sent by the Frontend for that access and
(b) a fixed amount of encrypted data to be written back to the
ORAM tree.

The above properties hold in our implementation. The
Frontend receives tamper-proof responses (by Theorem 2)
and therefore produces independent and random leaves.
Further, the global counter encryption scheme (Section 3.2)

5. This causes the PosMap size to grow, since each entry in the origi-
nal PosMap was Lþ 1 bits where L < 32 typically. As a result, we
incur one additional level of recursion. In [12], we describe an optimiza-
tion that compresses the 64 bit counters to be < L bits. But we do not
build it in hardware due to its extra complexity.
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trivially guarantees that the data written back to memory
gets a fresh pad. It is then straightforward to see that any
memory request trace generated by the Backend is indistin-
guishable from other traces of the same length.

5.3 A Note on ORAM Length Leakage
Outside Ascend

We remark that the two optimizations for ORAM Frontend
(PLB in Section 5.1 and PMMAC in Section 5.2) can affect the
total length of the ORAM sequence. This is not a concern in
the context of Ascend because a program always runs for a
user-defined time budget T . However, if these optimizations
are applied outside Ascend, we refer readers to [12], [25] for
a discussion on the threat model and potential defenses.

6 ORAM BACKEND

We now present several mechanisms to improve the ORAM
Backend’s throughput and make sure memory bandwidth
is the performance bottleneck. The techniques in this section
only impact the Backend and can be applied with or with-
out the optimizations from Section 5.

6.1 Stash Eviction Logic

As mentioned in Section 4, deciding where to evict each
block in the stash is a challenge for Path ORAM hardware
designs. In this section, we propose a new stash eviction
algorithm that takes a single cycle to evict a block and can
be implemented efficiently in hardware. This eliminates the
stash eviction overhead for any practical block size and
memory bandwidth.

Our proposal, the PushToLeafðÞ routine, is shown in
Algorithm 1. PushToLeafðStash; lÞ is run once during each
ORAM access and populates an array of pointers occ. Stash
can be thought of as a single-ported SRAM that stores data
blocks and their metadata. Once populated, occ½i	 points to
the block in Stash that will be written back to the ith posi-
tion along PðlÞ. Thus, to complete the ORAM eviction, a
hardware state machine sends each block given by
Stash½occ½i		 for i ¼ 0; . . . ; ZðLþ 1Þ � 1 to be encrypted and
written to external memory.

Suppose l is the current leaf being accessed. We represent
leaves as L-bit words which are read right-to-left: The ith bit
indicates whether path l traverses the ith bucket’s left child
(0) or right child (1). On Line 1, we initialize each entry of
occ to ?, to indicate that the eviction path is initially empty.
Occupied is an Lþ 1 entry array that records the number of
real blocks that have been added to each bucket so far.

The core operation in our proposal is the PushBackðÞ
subroutine, which takes as input the path l we are evicting
to, the path l0 a block in the stash is mapped to, and outputs
which level on path l that block should get written back to.
In Line 1, t1 represents in which levels the paths P ðlÞ and
P ðl0Þ diverge. In Line 1, t2 is a one-hot bus where the set bit
indicates the first level where P ðlÞ and P ðl0Þ diverge. Line 1
converts t2 to a vector of the form 000 . . . 111, where set bits
indicate which levels the block can be pushed back to.
Line 1 further excludes buckets that already contain Z
blocks (due to previous calls to PushBackðÞ). Finally,
Lines 1-1 turn all current bits off except for the left-most set

bit, which now indicates the level furthest towards the
leaves that the block can be pushed back to.

In hardware, we further improve Algorithm 1. First, we
add 2 pipeline stages after Lines 1 and 1 in the PushBackðÞ
circuit to improve clock frequency. An important subtlety is
that we don’t add pipeline stages between whenOccupied is
read and updated, so a new block can be sent to PushBackðÞ
every cycle. Second, as soon as the leaf for the ORAM access
is determined, blocks already in the stash are sent to the
PushBackðÞ circuit “in the background”. After cycle C, each
block read on the path is sent to the PushBackðÞ circuit as
soon as it arrives from external memory.

Algorithm 1. Bit Operation-Based Stash Scan. 2C Stands
for Two’s Complement Arithmetic

1: Inputs: The current leaf l being accessed
2: function PushToLeafStash, l
3: occ f? for i ¼ 0; . . . ; ðLþ 1ÞZ � 1g
4: Occupied f0 for i ¼ 0; . . . ; Lg
5: for i 0 to C þ LZ � 1 do
6: ða; li; DÞ  Stash½i	"Leaf assigned to ith block
7: level PushBackðl; li;OccupiedÞ
8: if a 6¼ ? and level > �1 then
9: offset level 
 Z þOccupied½level	
10: occ½offset	  i
11: Occupied½level	  Occupied½level	 þ 1
12: end if
13: end for
14: end function
15: functionPushBackl; l0;Occupied
16: t1 ðl� l0Þ k 0 "Bitwise XOR
17: t2 t1 & �t1 "Bitwise AND, 2C negation
18: t3 t2 � 1 "2C subtraction
19: full fðOccupied½i	 ¼? ZÞ for i ¼ 0 to Lg
20: t4 t3 & �full "Bitwise AND/negation
21: t5 reverseðt4Þ "Bitwise reverse
22: t6 t5 & �t5
23: t7 reverseðt6Þ
24: if t7 ¼? 0 then
25: return �1 "Block is stuck in stash
26: end if
27: return log 2ðt7Þ "Note: t7 must be one-hot
28: end function

6.2 Subtree Locality: Building Tree ORAMs
on DRAM

Recall from Section 4: To fully reap the performance benefits
of small blocks, we must address how to achieve high mem-
ory throughput for Path ORAM when implemented over
DRAM. DRAM depends on spatial locality to offer high
throughput: Bad spatial locality means more DRAM row
buffer misses which means time delay between consecutive
accesses (we assume an open page policy on DRAM). How-
ever, when na€ıvely storing the Path ORAM tree into an
array, two consecutive buckets along the same path hardly
have any locality, and it can be expected that row buffer hit
rate would be low.

To achieve high memory throughput for tree-based
ORAMs, we pack each subtree of k levels together, and treat
them as the nodes of a new tree, a 2k-ary tree with Lþ1

k

� �
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levels. Fig. 8 is an example with k ¼ 2. We set the node size
of the new tree to be the row buffer size times the number
of channels, which together with the original bucket size
determines k. We adopt the address mapping scheme in
which adjacent addresses first differ in channels, then col-
umns, then banks, and lastly rows. With commercial
DRAM DIMMs, k ¼ 6 or k ¼ 7 is possible which allows the
ORAM to maintain 90 to 95 percent of peak possible
DRAM bandwidth. More details can be found in [11].

7 ASIC IMPLEMENTATION AND MEASUREMENTS

We now evaluate a complete Ascend secure processor pro-
totype in silicon, which was taped out March 2015 in 32 nm
SOI, and was successfully tested in January 2017.

7.1 Chip Organization

The chip, shown in Fig. 9, is composed of 25 cache-coherent
SPARCT1 cores, an on-chip network, and theORAMcontrol-
ler. The ORAM controller serves as the on-chip memory con-
troller, intercepting LLC misses from the cores. The chip was
done in collaboration with the Princeton OpenPiton proj-
ect [26]. The Princeton team contributed the SPARC T1 cores
and the on-chip network.We remark that the ORAM control-
ler could have been connected to any cache/core hierarchy.

To implement Ascend, we require the (integrity-checked)
ORAM controller (Sections 5 and 6), logic for timing protec-
tion and logic to initiate/terminate the server-user protocol
(Section 2). Since the ORAM controller already requires
AES and SHA units, we simply reuse those existing compo-
nents to perform the server-user protocol. To achieve timing
channel protection, we did not explicitly implement the
counter and queue as described in Section 2.3 but note that
this logic requires negligible area.

7.2 Implementation Details

The ORAM controller was taped out with L ¼ 23 and
B ¼ 512 bits. The entire design required five SRAM/RF
memories (which we manually placed during layout): The
PLB data array, PLB tag array, on-chip PosMap, stash data
array and stash tag array. Numerous other (small) buffers
were needed and implemented in standard cells. For
PMMAC, we use flat 64 bit counters to check freshness.
Thus, each PosMap block contains 8 counters, and we need
six levels of recursion to achieve a final on-chip PosMap
size of 8 KBytes.

We adopt AES and SHA units from OpenCores [27]. We
use “tiny AES,” a pipelined AES-128 core for memory
encryption/decryption. Tiny AES has a 21 cycle latency and
produces 128 bits of output per cycle. Two copies of a non-
pipelined 12-cycle AES core are used as pseudorandom
number generators, one in Frontend to generate new leaf
labels, and the other in Backend to generate random paths
for dummy accesses.We could use a single AES core for both
purposes to save area, but opt for two separate cores for sim-
plicity. A non-pipelined SHA3-224 core is used to implement
MACKðÞ for PMMAC.We truncate eachMAC to 128 bits.

7.3 Tape-Out Area and Performance

Post synthesis, the ORAM controller (which includes all
hardware security components in Ascend) had a total area of
0.326 mm2. For layout, we adopted a hierarchical work flow.

Fig. 8. Illustration of subtree locality.

Fig. 9. Chip die photo (top left), whole-chip tape-out diagram (bottom left), and the ORAM controller broken up into the three logical modules (right).
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We divided our ORAM controller into three logical modules:
ORAMFrontend, ORAMBackend, andAES units.We placed
and routed the three modules separately. Their respective
dimensions and post-layout areas are given in Table 2.

The bounding box of the ORAM controller was set to be
2 mm � 0.5 mm. This is due to an early design decision to
put ORAM at the top edge of the chip as well as artificial
constraints imposed by SRAM dimensions. Therefore, while
the bounding box occupies �1 mm2 area, the ORAM con-
troller post-layout area is more accurately represented by
the combined post-layout area of the three modules, which
sum to �0.51 mm2.

Our design met timing at 1 GHz during place-and-route
and can complete an ORAM access for 512 bits of user data
(one cache line) in �1275 cycles (not including the initial
round-trip delay to retrieve the firstword of data from external
memory). In an earlier work based on simulation results [12],
we reported a very similar ORAM latency of 1208 cycles per
access, which leads to an average slowdown of�4� on SPEC-
Int-2006 benchmarkswith a typical cache hierarchy.

7.4 Functional Tests and Power Measurements in
Silicon

We test ORAM functionality and measure its power con-
sumption on first silicon. Table 3 shows the ORAM con-
troller’s dynamic power consumption across a range of
voltages and clock frequencies. Dynamic power includes
transistor switching power for the ORAM controller’s logic,
the SRAMs and the clock. For each test, core voltage (VDD)
is set to the values shown in the table and SRAM voltage is
set to 0.05 V higher than VDD. The power numbers do not
include the power consumption from non-ORAM logic on
the chip, the I/O pins or the external memory.

To measure peak power consumption, we need to keep
the ORAM controller busy servicing memory requests at its
highest throughput possible. Therefore, during power tests,
we feed the ORAM controller with a synthetic memory
request trace from an on-chip traffic generator, and use an
on-chip buffer mimicking an external memory that has zero
latency and can fully utilize the chip pin bandwidth. Thus,
each measurement gives an upper bound on the chip power
consumption in a real deployment.

In each test, we sample the chip current draw 100 times in
16 seconds and compute the average power. It isworth noting
that the ORAM power consumption will gradually increase
with time as the chip temperature increases. At lower voltage
(< 1 V), the effect of temperature increase is not noticeable
and we start sampling the current 5 seconds after power on.
At high voltage (� 1 V), this effect cannot be ignored, and we
wait for the current draw to stabilize before sampling current.

Generally, running at a higher clock frequency requires a
higher voltage to make transistors toggle faster. For each
frequency in Table 3, the ORAM logic will stop functioning

(not meet timing) below a certain voltage, at which point
we stop measuring power. For each frequency, the ideal
point to run the ORAM controller is the lowest recorded
voltage, which is the point that ORAM functions and con-
sumes the least power. Since increasing voltage beyond the
threshold strictly consumes more power, we omit the 1 V
and 1.1 V measurements for frequencies 250 MHz and
500 MHz. Our test setup constrained us to test voltages
�1.1 V. This is why we were only able to test frequencies up
to 857 MHz. If equipped with a more effective cooling solu-
tion, the chip may function beyond 857 MHz with > 1.1 V
voltage. We repeat the test at 500 MHz and 0.9 V across
three different chips. Dynamic power consumptions across
chips vary by about 7 percent.

We also measure the power consumption from the clock
tree. For these tests, the ORAM controller receives the clock
and is ready to service memory requests but no memory
request is made. For the frequencies and voltages tested in
Table 3, the clock tree accounts for around 40 percent of the
total dynamic power.

8 RELATED WORK

Academic work on single-chip (tamper-resistant) secure
processors include eXecute Only Memory (XOM) [3], [28],
[29], Aegis [4], [30] and Bastion [31]. In XOM, applications
(both instructions and data) are only decrypted in secure
compartments. XOM does not manage transparent spilling
of data to a larger storage (e.g., cache misses to an external
memory). Aegis, a single-chip secure processor, performs
memory integrity verification and encryption on all data
written to main memory, but does not provide access pat-
tern or timing protection. Bastion provides the same exter-
nal memory protection as Aegis, and uses a trusted
hypervisor to protect applications when running alongside
an untrusted operating system.

In the industry, secure processor extensions include
ARM TrustZone [32], TPM+TXT [2] and most recently Intel
SGX [5], [33]. Trustzone creates a “secure world” which iso-
lates applications as long as they only require on-chip
SRAM memory. TPM+TXT gives the user ownership over
an entire machine, but does not provide encryption or other
protection to main memory. Intel SGX (similar to XOM,
Aegis and Bastion) isolates applications from an untrusted
operating system using hardware-supported enclaves, and
provides (similar to Aegis) encryption and integrity checks
over data written to main memory.

TABLE 2
Dimensions (Width � Height) and Area of the Three Modules of

the ORAM Controller

Module Frontend Backend Encryption

Dimensions (mm) 636.7 � 218.7 346.6 � 364.5 669.0 � 364.5
Area (mm2) 0.139 0.126 0.244

TABLE 3
ORAM Controller Power Consumption (mW)
Under Different Frequencies and Voltages

V\MHz 250 500 750 857

0.7 29.5
0.75 32.4
0.8 36.8
0.85 43.2 74.8
0.9 50.7 84.9
0.95 57.6 97.9
1.0 150
1.1 208 299
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None of the above works includes memory access pat-
tern attacks or timing attacks in their threat model. An
early work that considers access pattern attacks is
HIDE [6]. Using random shuffles for small chunks of mem-
ory, HIDE mitigates but does not completely stop informa-
tion leakage from memory access patterns. Ascend is the
first full system architecture that provides cryptographic
security against an adversary that has complete control/
visibility over external memory. More generally, Ascend
prevents untrusted applications (buggy or arbitrarily mali-
cious) from revealing user secrets outside the trusted chip
through any digital side-channel. A concurrent hardware
ORAM project named Phantom [19] is treated as a baseline
design in our paper.

There have been a few works that propose additional
techniques to improve hardware ORAM in the secure pro-
cessor setting building on top of our work [34], [35]. They
have adopted most of the techniques in this work such as
the PLB and subtree locality. Nayak et al., has adopted our
ORAM controller design in a secure hardware prototype for
obfuscation [36]. Liu et al., present compiler techniques to
reduce the required number of ORAM accesses [37] and
evaluate on the Phantom system [38].

Outside the secure processor setting, ORAM has also
found applications in various areas including storage out-
sourcing [39], [40], [41], [42], searchable encryption [43],
secure computation [44], [45], proof of retrievability [46]
and garbled RAM [47].

9 CONCLUSION

This paper has described the Ascend execution model, for
running untrusted programs operating safely on sensitive
user data, as well as detailed implementation and measure-
ment results for the Ascend prototype chip in silicon. This
work proves the viability of a single-chip secure processor
which can protect the privacy of software intellectual prop-
erty or user data, as it interacts with an external memory
device. The evaluation results are encouraging. The hardware
mechanisms needed to support Ascend, when integrated into
the 25 core test chip, are roughly half the size of a single pro-
cessor core. Further, average program slowdown considering
these mechanisms is estimated to be �4�—roughly the cost
of running a program in an interpreted language.

The Ascend execution model in its current form is some-
what constrained. Ascend does not support multiple ten-
ants sharing the same chip, since on-chip resource sharing
can leak private information. Other modules cannot write to
Ascend main memory using DMA, and Ascend cannot be
used in a multi-socket shared memory architecture. We
leave these challenges to future work, and note that there
have been efforts in these directions [33], [38], [48].
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